English

If ∫1x+x5 dx = f(x) + c, then ∫x4x+x5dx = ______ - Mathematics and Statistics

Advertisements
Advertisements

Question

If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______

Options

  • f(x) − log x + c

  • f(x) + log x + c

  • log x − f(x) + c

  • `1/5x^5` f(x) + c

MCQ
Fill in the Blanks

Solution

log x − f(x) + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 - tan x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate `int 1/("x" ("x" - 1))` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate `int 1/((2"x" + 3))` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int (7x + 9)^13  "d"x` ______ + c


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int (cos x)/(1 - sin x) "dx" =` ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int "cosec"^4x  dx` = ______.


Evaluate:

`int sin^2(x/2)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×