English

Find ∫((3sinθ−2)cosθ)/(5−cos2θ−4sinθ)dθ - Mathematics

Advertisements
Advertisements

Question

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`

Solution

Let I = `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`

`=>I=int((3sintheta-2)costheta)/(5-(1-sin^2theta)-4sintheta)d theta`

`=>I=int((3sintheta-2)costheta)/(sin^2theta-4sin theta+4)d theta`

Now, let sin θ=t.

⇒ cos θ dθ=dt

`:.I=int(3t-2)/(t^2-4t+4)`

`=>3t-2=Ad/dx(t^2-4t+4)+B`

`=>3t-2=A(2t-4)+B`

`=>3t-2=(2A)t+B-4A`

Comparing the coefficients of the like powers of t, we get

`2A=3=>A=3/2`

and

B-4A=-2

`=>B-4xx3/2=-2`

`=>B=-2+6=4`

Substituting the values of A and B, we get

`3t-2=3/2(2t-4)+4`

`:.I=int((3t-2)dt)/(t^2-4t+4)`

`=int((3/2(2t-4)+4)/(t^2-4t+4))dt`

 `=3/2int((2t-4)/(t^2-4t+4))dt+4intdt/(t^2-4t+4)`

 `=3/2I_1+4I_2 `

 Here,

`I_1=int((2t-4)dt)/(t^2-4t+4) `

Now,

`I_2=int((2t-4)dt)/(t^2-4t+4)`

Let t24t+4=p

(2t4) dt=dp

`I_1=int((2t-4)dt)/(t^2-4t+4)`

`=int(dp)/p`

 =log |p|+C1

=log |t24t+4|+C1   ......(2)

and

`I_2=intdt/(t^2-4t+4)`

`=intdt/(t-2)^2`

= ∫(t2)2 dt

`=(t-2)^(-2+1)/(-2+1)+C_2`

 `=(-1)/(t-2)+C_2 " .......(3)"`

From (1), (2) and (3), we get

`I=3/2log|t^2-4t+4|+4xx-1/(t-2)+C_1+C_2`

`=3/2log|sin^2theta-4sintheta+4|+4/(2-t)+C " (Where C=C1+C2)"`

`=3/2log|(sintheta-2^2)|+4/(2-sin theta)+C`

`=3/2xx2log|sintheta-2|+4/(2-sintheta)+C`

`=3log|2-sintheta|+4/(2-sintheta)+C`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Delhi Set 1

RELATED QUESTIONS

Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


`int (sin4x)/(cos 2x) "d"x`


`int 1/(xsin^2(logx))  "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×