English

Int"Dx"/9x2+1= - Mathematics and Statistics

Advertisements
Advertisements

Question

`int "dx"/(9"x"^2 + 1)= ______. `

Options

  • `1/3 "tan"^-1(2"x") +"c"`

  • `1/3 "tan"^-1"x" +"c"`

  • `1/3 "tan"^-1(3"x") +"c"`

  • `1/3 "tan"^-1(6"x") +"c"`

MCQ

Solution

`1/3 "tan"^-1(3"x") +"c"`

Let I = `int "dx"/(9"x"^2 + 1)`

= `1/9 int "dx"/(("x"^2) +(1/3)^2)`

= `1/9 1/(1/3) "tan"^-1("x"/(1/3)) + "C"`

`= 1/3 "tan"^-1(3"x") + "c"`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

cot x log sin x


Integrate the functions:

`(sin x)/(1+ cos x)^2`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate `int (5"x" + 1)^(4/9)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(1 + sin2x)  "d"x`


`int(log(logx))/x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×