English

Evaluate the following integrals : ∫x-7x-9.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`

Sum

Solution

Let I = `int sqrt((x - 7)/(x - 9)).dx`

= `int sqrt((x - 7)/(x - 9) xx (x - 7)/(x - 7)).dx`

= `int sqrt((x - 7)^2/(x^2 - 16x + 63)).dx`

= `int (x - 7)/sqrt(x^2 - 16x + 63).dx`

Let x – 7 = `"A"[d/dx(x^2 - 16x + 63)] + "B"`

= A(2x – 16) + B
= 2Ax + (B – 16A)
Comparing the coefficient of x and constant term on both sides, we get
2A = 1

∴ A = `(1)/(2)` and

B – 16A = – 7

∴ `"B" - 16(1/2)` = – 7
∴ B = 1
∴ x – 7 = `(1)/(2)(2x - 16) + 1`

∴ I = `int (1/2(2x - 16) + 1)/sqrt(x^2 - 16x + 63).dx`

 = `(1)/(2) int (2x - 16)/sqrt(x^2 - 16x + 63).dx + int (1)/sqrt(x^2 - 16x + 63).dx`

= `(1)/(2)"I"_1 + "I"_2`

In I1, put x2 – 16x + 63 = t

∴ (2x – 16)dx = dt

∴ I1 = `(1)/(2) int (1)/sqrt(t)dt`

= `(1)/(2) int t^(-1/2)dt`

= `(1)/(2) t^(1/2)/((1/2)) + c_1`

= `sqrt(x^2 - 16x + 63) + c_1`

I2 = `int (1)/sqrt(x^2 - 16x + 63).dx`

= `int (1)/sqrt((x - 8)^2 - 1^2).dx`

= `log|x - 8 + sqrt((x - 8)^2 - 1^2)| + c_2`

= `log|x  - 8 + sqrt(x^2 - 16x + 63)| + c_2`

∴ I = `sqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`,, where c = c1 + c2

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (C) [Page 128]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`1/(1 + cot x)`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (log x)/(log ex)^2` dx = _________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int (cos x)/(1 - sin x) "dx" =` ______.


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


Write `int cotx  dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int1/(x^2+4x-5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×