Advertisements
Advertisements
Question
Evaluate the following : `int (logx)2.dx`
Solution
Let I = `int (logx)^2.dx`
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int t^2e^t dt`
= `t^2 int e^t dt - int [d/dx(t^2) int e^t - dt]dt`
= `t^2e^t - int 2te^t dt`
= `t^2e^t - 2[t int e^t dt - int {d/dt (t) int e^t dt}dt]`
= `t^2e^t - 2[te^t - int 1.e^t dt]`
= `t^2e^t - 2te^t + 2e^t + c`
= `e^t[t^2 - 2t + 2] + c`
= x[(log x)2 – 2(log x) + 2] + c.
Alternative Method :
Let I = `int (logx)^2.dx`
= `int (logx)^2. 1dx`
= `(logx)^2 int1.dx - int[d/dx (logx)^2.int1.dx].dx`
= `(logx)^2.x - int 2logx.d/dx(logx).xdx`
= `x(logx)^2 - int 2logx xx 1/x xx x.dx`
= `x(logx)^2 - 2 int (logx).1dx`
= `x(logx)2 - 2[(logx) int 1.dx - int {d/dx (logx) int 1.dx}.dx]`
= `x(logx)^2 - 2[(logx)x - int1/x xx x.dx`
= `x(logx) - 2x(logx) + 2 int 1.dx`
= `x(logx)^2 - 2x(logx) + 2x + c`
= `x[(logx)^2 - 2(logx) + 2] + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
`int "dx"/(9"x"^2 + 1)= ______. `
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int sqrt(1 + "x"^2) "dx"` =
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int cos sqrtx` dx = _____________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`