English

Evaluate the following integrals : ∫e3x-e2xex+1.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`

Sum

Solution

Let I = `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`

= `int sqrt((e^(2x)(e^x - 1))/(e^x + 1)).dx`

= `int e^xsqrt((e^x - 1)/(e^x + 1)).dx`

Put ex = t

∴ ex dx = dt

∴ I = `int sqrt((t - 1)/(t + 1))dt`

= `int sqrt((t - 1)/(t + 1) xx (t - 1)/(t - 1))dt`

= `int sqrt(((t - 1)^2)/(t^2 - 1)dt`

= `int (t - 1)/sqrt(t^2 - 1)dt`

= `(1)/(2) int (2t)/sqrt(t^2 - 1)dt - int (1)/sqrt(t^2 - 1)dt`

= I1 – I 

In I1, put t2 – 1 = θ

∴ 2t dt = dθ

∴ I1 = `(1)/(2)int (dθ)/sqrt(θ)`

= `(1)/(2) int θ^(-1/2) dθ`

= `(1)/(2) (θ^(1/2))/((1/2)) + c_1`

= `sqrt(θ) + c_1`

= `sqrt(t^2 - 1) + c_1`

= `sqrt(e^(2x) - 1) + c_1`

and I2 = `int (1)/sqrt(t^2 - 1)dt`

= `log|t + sqrt(t^2 - 1)| + c_2`

= `log|e^x + sqrt(e^(2x) - 1)| + c_2`

∴ I = `sqrt(e^(2x) - 1) - log|e^x + sqrt(e^(2x) - 1) + c`, where c = c1 + c2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (C) [Page 128]

APPEARS IN

RELATED QUESTIONS

Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

tan2(2x – 3)


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Solve: dy/dx = cos(x + y)


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int (log x)/(log ex)^2` dx = _________


`int sqrt(1 + sin2x)  "d"x`


`int logx/x  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int cos^7 x  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `intsinx/(sinx - cosx)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×