Advertisements
Advertisements
Question
Evaluate the following : `int x^2.log x.dx`
Solution
Let I = `int x^2.logx.dx`
= `int log x.x^2.dx`
= `(logx) int x^2.dx - int[{d/dx (logx) int x^2.dx}].dx`
= `(logx).x^3/(3) - int (1)/x.x^3/(3).dx`
= `x^3/(3) logx - (1)/(3) int x^2.dx`
= `x^3/(3) logx - (1)/(3)(x^3/3) + c`
= `x^3/(9)(3.logx - 1) + c`.
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in x sec2 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in e2x sin x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
∫ x log x dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sinx)/(1 + sin x) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Solution of the equation `xdy/dx=y log y` is ______
`int1/(x+sqrt(x)) dx` = ______
`int logx dx = x(1+logx)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx