English

Evaluate the following : ∫x.sin2x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int x.sin^2x.dx`

Sum

Solution

`int x.sin^2x.dx`

= `int x((1 - cos2x)/2).dx`

= `(1)/(2) int (x - x cos2x).dx`

= `(1)/(2) int x.dx - (1)/(2) int x cos 2x.dx`

= `(1)/(2).x^2/(2) - (1)/(2)[x int cos 2x.dx - int {d/dx (x) int cos 2x.dx}.dx]`

= `x^2/(4) - (1)/(2)[x. (sin2x)/(2) - int 1. (sin2x)/(2).dx]`

= `x^2/(4) - (1)/(2) x. sin2x + (1)/(4) sin 2x.dx`

= `x^2/(4) - (1)/(4) x.sin2x + (1)/(4).((-cos2x))/(2) + c`

= `x^2/(4) - (1)/(4) x.sin2x - (1)/(8) cos 2x + c`

= `(1)/(4) [x^2 - x.sin 2x - (1)/(2) cos 2x] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 137]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x (log x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int logx  dx = x(1+logx)+c`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×