English

Find: ∫ex2(x5+2x3)dx. - Mathematics

Advertisements
Advertisements

Question

Find: `int e^(x^2) (x^5 + 2x^3)dx`.

Sum

Solution

I = `int e^(x^2) (x^5 + 2x^3)dx`

I = `int x^5 e^(x^2) dx + 2int x^3 e^(x^2) dx`

Applying integration by part in `int x^3e^(x^2) dx`

I = `int x^5 e^(x^2) dx + (2x^4)/4 e^(x^2) - 2int e^(x^2) 2x . x^4/4 dx`

= `int x^5e^(x^2) dx + (2x^4e^(x^2))/4 - 2int (x^5e^(x^2))/2dx`

= `(x^4e^(x^2))/2 + C`.

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 2

RELATED QUESTIONS

Integrate the function in x log x.


Integrate the function in x tan-1 x.


Integrate the function in x sec2 x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int 1/sqrt(2x^2 - 5)  "d"x`


`int sin4x cos3x  "d"x`


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


`int log x * [log ("e"x)]^-2` dx = ?


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate the following.

`intx^3 e^(x^2) dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×