Advertisements
Advertisements
Question
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Solution
I = `int e^(x^2) (x^5 + 2x^3)dx`
I = `int x^5 e^(x^2) dx + 2int x^3 e^(x^2) dx`
Applying integration by part in `int x^3e^(x^2) dx`
I = `int x^5 e^(x^2) dx + (2x^4)/4 e^(x^2) - 2int e^(x^2) 2x . x^4/4 dx`
= `int x^5e^(x^2) dx + (2x^4e^(x^2))/4 - 2int (x^5e^(x^2))/2dx`
= `(x^4e^(x^2))/2 + C`.
APPEARS IN
RELATED QUESTIONS
Integrate the function in x log x.
Integrate the function in x tan-1 x.
Integrate the function in x sec2 x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int sin4x cos3x "d"x`
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
`int log x * [log ("e"x)]^-2` dx = ?
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate the following.
`intx^3 e^(x^2) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.