Advertisements
Advertisements
प्रश्न
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
उत्तर
I = `int e^(x^2) (x^5 + 2x^3)dx`
I = `int x^5 e^(x^2) dx + 2int x^3 e^(x^2) dx`
Applying integration by part in `int x^3e^(x^2) dx`
I = `int x^5 e^(x^2) dx + (2x^4)/4 e^(x^2) - 2int e^(x^2) 2x . x^4/4 dx`
= `int x^5e^(x^2) dx + (2x^4e^(x^2))/4 - 2int (x^5e^(x^2))/2dx`
= `(x^4e^(x^2))/2 + C`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int logx dx = x(1+logx)+c`
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3 e^(x^2)dx`