Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
उत्तर
Let I =`int ("x"/("x + 1")^2) "e"^"x"` dx
`= int "e"^"x" ((("x + 1") - 1)/("x + 1")^2)` dx
`= int "e"^"x"(("x + 1")/("x + 1")^2 - 1/("x + 1")^2)` dx
`= int "e"^"x" (1/("x + 1") - 1/("x + 1")^2)` dx
Put f(x) = `1/("x + 1")`
∴ f '(x) = `(-1)/("x + 1")^2`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
∴ I = `"e"^"x" (1/("x + 1"))` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int x^2*cos^-1 x*dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)