Advertisements
Advertisements
प्रश्न
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
पर्याय
`sin("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "a"))/(sin(x - "b"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`sin("b" - "a")log|(sin("x" - "a"))/(sin(x - "b"))| + "C"`
उत्तर
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
Explanation:
Let I = `int "dx"/(sin(x - "a")sin(x - "b"))`
Multiplying and dividing by sin(b – a) we get,
I = `1/(sin("b" - "a")) int (sin("b" - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x + "b" - x - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin[(x - "a") - (x - "b")])/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") cos(x - "b") - cos(x - "a") sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") * cos(x - "b"))/(sin(x - "a")*sin(x - "b")) - (cos(x - "a")*sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int [(cos(x - "b"))/(sin(x - "b")) - (cos(x - "a"))/(sin(x - "a"))]"d"x`
= `1/(sin("b" - "a")) int [cot(x - "b") - cot(x - "a")]"d"x`
= `1/(sin("b" - "a")) [log sin(x - "b") - logsin(x - "a")] + "C"`
= `1/(sin("b" - "a")) * log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
I = `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
APPEARS IN
संबंधित प्रश्न
Integrate the function in `x^2e^x`.
Integrate the function in x tan-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following: `int x.sin^-1 x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int 1/(4x + 5x^(-11)) "d"x`
`int sin4x cos3x "d"x`
Evaluate `int 1/(x log x) "d"x`
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int_0^1 x tan^-1 x dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`inte^x sinx dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`