Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
उत्तर
Let I = `int (x + 1)sqrt(2x^2 + 3)`
Let x + 1 = `"A"[d/dx (2x^2 + 3)] + "B"`
= A (4x) + B
= 4Ax + B
Comparing the coefficients of and constant on both sides, we get
4A = 1, B = 1
∴ A = `(1)/(4), "B"` = 1
∴ x + 1 = `(1)/(4)(4x) + 1`
∴ I = `int [1/4 (4x) + 1]sqrt(2x^2 + 3).dx`
= `(1)/(4) int 4x sqrt(2x^2 + 3).dx + int sqrt(2x^2 + 3).dx`.
= I1 + I2
In I1 = put 2x2 + 3 = t
∴ 4x.dx = dt
∴ I1 = `(1)/(4) int t^(12).dt`
= `(1)/(4)(t^(3/2)/(3/2)) + c_1`
= `(1)/(6)(2x^2 + 3)^(3/2) + c_1`
I2 = `int sqrt(2x^2 + 3).dx`
= `sqrt(2) int sqrt(x^2 + 3/2).dx`
= `sqrt(2)[x/2sqrt(x^2 + 3/2) + ((3/2))/(2)log|x + sqrt(x^2 + 3/2)|] + c_2`
= `sqrt(2)[x/2sqrt(x^2 + 3/2) + (3)/(4)log|x + sqrt(x^2 + 3/2)|] + c_2`
∴ I = `(1)/(6)(2x^2 + 3)^(3/2) + sqrt(2)[x/2 sqrt(x^2 + 3/2) + (3)/(4) log|x + sqrt(x^2 + 3/2)|] + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in e2x sin x.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (x2 + 1)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Evaluate: ∫ (log x)2 dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(4x + 5x^(-11)) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int 1/sqrt(x^2 - 8x - 20) "d"x`
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`inte^(xloga).e^x dx` is ______
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int e^(logcosx)dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`