Advertisements
Advertisements
प्रश्न
Integrate the function in x cos-1 x.
उत्तर
Let `I = int x cos^-1 x dx = int cos^-1 x*x dx`
`= cos^-1 x* int x dx - int [d/dx (cos^-1 x) int x dx] dx`
`= cos^-1 x (x^2/2) - int (-1)/ sqrt (1 - x^2) (x^2/2) dx`
`= x^2/2 cos^-1 x + 1/2 int x^2/ sqrt (1 - x^2) dx`
∴ `I = x^2/2 cos^-1 x+ 1/2 I_1` ....(i)
Where `I_1 = int x^2/ sqrt (1 - x^2) dx`
Put x = cos θ
⇒ dx = -sinθ dθ
∴ `I_1 = int (cos^2 theta (-sin theta))/sqrt (1 - cos^2 theta) d theta`
`= - int cos^2 theta d theta = - 1/2 int (1 + cos 2 theta) d theta`
`= -1/2 (theta + (sin 2 theta)/2) + C`
`= -1/2 (theta + 1/2 xx 2 sin theta cos theta) + C`
`= - 1/2 (theta + cos theta sqrt (1 - cos^2 theta)) + C`
`= - 1/2 (cos^-1 x + x sqrt (1 - x^2)) + C` ....(ii)
From (i) and (ii), we get
`I = (2x^2 - 1) (cos^-1 x)/4 - x/4 sqrt (1 - x^2) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in `x^2e^x`.
Integrate the function in x log 2x.
Integrate the function in x tan-1 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: ∫ (log x)2 dx
`int 1/x "d"x` = ______ + c
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int (logx)^2 dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3 e^(x^2)dx`