मराठी

Integrate the function in x cos-1 x. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in x cos-1 x.

बेरीज

उत्तर

Let `I = int x cos^-1 x  dx = int cos^-1 x*x dx`

`= cos^-1 x* int x  dx - int [d/dx (cos^-1 x) int x  dx]  dx`

`= cos^-1 x (x^2/2) - int (-1)/ sqrt (1 - x^2) (x^2/2) dx`

`= x^2/2 cos^-1 x + 1/2 int x^2/ sqrt (1 - x^2)  dx`

∴ `I = x^2/2 cos^-1 x+ 1/2 I_1`             ....(i)

Where `I_1 = int x^2/ sqrt (1 - x^2)  dx`

Put x = cos θ 

⇒ dx = -sinθ dθ 

∴ `I_1 = int (cos^2 theta (-sin theta))/sqrt (1 - cos^2 theta) d theta`

`= - int cos^2 theta d theta = - 1/2 int  (1 + cos 2 theta) d theta`

`= -1/2 (theta + (sin 2 theta)/2) + C`

`= -1/2 (theta + 1/2 xx 2 sin theta cos theta) + C`

`= - 1/2 (theta + cos theta sqrt (1 - cos^2 theta)) + C`

`= - 1/2 (cos^-1 x + x sqrt (1 - x^2)) + C`             ....(ii)

From (i) and (ii), we get

`I = (2x^2 - 1) (cos^-1 x)/4 - x/4 sqrt (1 - x^2) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 9 | पृष्ठ ३२७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in `x^2e^x`.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: ∫ (log x)2 dx


`int 1/x  "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


Find `int_0^1 x(tan^-1x)  "d"x`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int (logx)^2 dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate `int tan^-1x  dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×