Advertisements
Advertisements
प्रश्न
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
उत्तर
Let I = `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Let `(2x + 1)/((x + 1)(x - 2)) = "A"/(x + 1) + "B"/(x - 2)`
∴ 2x + 1 = A(x – 2) + B(x + 1) ......(i)
Putting x = – 1 in (i), we get
2(– 1) + 1 = A(– 1 – 2) + B(0)
∴ – 1 = – 3A
∴ A = `1/3`
Putting x = 2 in (i), we get
2(2) + 1 = A(0) + B(2 + 1)
∴ 5 = 3B
∴ B = `5/3`
∴ `(2x + 1)/((x + 1)(x - 2)) = ((1/3))/(x + 1) + ((5/3))/(x - 2)`
∴ I = `int(((1/3))/(x + 1) + ((5/3))/(x - 2)) "d"x`
= `1/3 int 1/(x + 1) "d"x + 5/3 int 1/(x - 2) "d"x`
∴ I = `1/3 log|x + 1| + 5/3 log|x - 2| + "c"`
संबंधित प्रश्न
Integrate the function in x sec2 x.
Integrate the function in x (log x)2.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int logx/(1 + logx)^2 "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`