Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
उत्तर
Let I = `int e^x[x/(x + 1)^2].dx`
= `int e^x [((x + 1) - 1)/(x + 1)^2].dx`
= `int e^x [1/(x + 1) - 1/(x + 1)^2].dx`
Let f(x) = `(1)/(x + 1)`
= `(x + 1)^-1`
∴ f'(x) = `d/dx(x + 1)^-1`
= `-(x + 1)^-2 d/dx(x + 1)`
= `(-1)/(x + 1)^2 xx 1`
= `(-1)/(x + 1)^2`
∴ I = `int e^x [f(x) + f'(x)].dx`
= ex.f(x) + c
= `e^x/(x + 1) + c`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in x2 log x.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `e^x (1/x - 1/x^2)`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
Solve: `int sqrt(4x^2 + 5)dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
`intsqrt(1+x) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
Evaluate:
`int1/(x^2 + 25)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`