Advertisements
Advertisements
प्रश्न
Integrate the function in x2 log x.
उत्तर
Let `I = int x^2 log x dx`
`= log (x) (x^3/3) - int [d/dx (log x) (x^3/3)] dx`
`= log x. x^3/3 - int 1/x. x^3/3 dx`
`= x^3/3 log x - 1/3 int x^2 dx`
`= x^3/3 log x - 1/3. x^3/3 + C`
`= x^3/3 log x - x^3/9 + C`
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in `x^2e^x`.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
`intx^2 e^(x^3) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Solution of the equation `xdy/dx=y log y` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`