Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
उत्तर
Let I = `int "x"^3 "e"^("x"^2)`dx
`= int "x"^2 * "x" * "e"^("x"^2)` dx
Put x2 = t
∴ `"2x" * "dx" = "dt"`
∴ x dx = `"dt"/2`
∴ I = `1/2 int "te"^"t"` dt
`= 1/2 ["t" int "e"^"t" "dt" - int ["d"/"dt" ("t") int "e"^"t" "dt"] "dt"]`
`= 1/2 ["te"^"t" - int 1 * "e"^"t" "dt"]`
`= 1/2 ("te"^"t" - "e"^"t") + "c" = 1/2 "e"^"t" ("t - 1")` + c
∴ I = `1/2 "e"^("x"^2) ("x"^2 - 1)` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x sin-1 x.
Evaluate the following : `int x^2tan^-1x.dx`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following w.r.t.x : sec4x cosec2x
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int 1/x "d"x` = ______ + c
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int1/(x+sqrt(x)) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int1/(x^2 + 25)dx`
The value of `inta^x.e^x dx` equals