Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
उत्तर
Let I = `int "e"^"x" (1/"x" - 1/"x"^2)`dx
Put f(x) = `1/"x"`
∴ f '(x) = `1/"x"`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
∴ I = `"e"^"x" * 1/"x" + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int(x + 1/x)^3 dx` = ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)