मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

∫(x+1x)3dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int(x + 1/x)^3 dx` = ______.

पर्याय

  • `1/4(x + 1/x)^4 + c`

  • `x^4/4 + (3x^2)/2 + 3log x - 1/(2x^2) + c`

  • `x^4/4 + (3x^2)/2 + 3log x + 1/x^2 + c`

  • `(x - x^(-1))^3 + c`

MCQ
रिकाम्या जागा भरा

उत्तर

`int(x + 1/x)^3 dx` = `bb(underline(x^4/4 + (3x^2)/2 + 3log x - 1/(2x^2) + c))`.

Explanation:

`(x + 1/x)^3 = x^3 + 3x + 3/x + 1/x^3`

∴ `int(x + 1/x)^3dx = int(x^3 + 3x + 3/x + 1/x^3)dx`

= `x^4/4 + (3x^2)/2 + 3logx - 1/(2x^2) + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.5: Integration - Q.1

संबंधित प्रश्‍न

Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in e2x sin x.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "dx"/("9x"^2 - 25)`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


Find: `int e^x.sin2xdx`


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Evaluate the following.

`int x^3 e^(x^2) dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate:

`int (logx)^2 dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×