Advertisements
Advertisements
प्रश्न
`int(x + 1/x)^3 dx` = ______.
पर्याय
`1/4(x + 1/x)^4 + c`
`x^4/4 + (3x^2)/2 + 3log x - 1/(2x^2) + c`
`x^4/4 + (3x^2)/2 + 3log x + 1/x^2 + c`
`(x - x^(-1))^3 + c`
उत्तर
`int(x + 1/x)^3 dx` = `bb(underline(x^4/4 + (3x^2)/2 + 3log x - 1/(2x^2) + c))`.
Explanation:
`(x + 1/x)^3 = x^3 + 3x + 3/x + 1/x^3`
∴ `int(x + 1/x)^3dx = int(x^3 + 3x + 3/x + 1/x^3)dx`
= `x^4/4 + (3x^2)/2 + 3logx - 1/(2x^2) + c`
APPEARS IN
संबंधित प्रश्न
Integrate the function in (x2 + 1) log x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in e2x sin x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int e^x.sin2xdx`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate:
`int (logx)^2 dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`