मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫logxx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int logx/x.dx`

बेरीज

उत्तर

Let I = `int logx/x.dx`

Put log x = t       ∴ `(1)/x.dx` = dt

∴ I = `int t.dt`

= `(1)/(2)t^2 + c`

= `(1)/(2)(logx)^2 + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 1.19 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x log x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in x (log x)2.


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(4x^2 - 1)  "d"x`


∫ log x · (log x + 2) dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int(logx)^2dx` equals ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`intx^3 e^(x^2)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×