मराठी

Evaluate the following: d∫sin-1x(1-x)32dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`

बेरीज

उत्तर

Let I = `int (sin^-1 x)/((1 - x)^(3/2)) "d"x`

Put x = sin θ

⇒ dx = cos θ dθ

I = `int (sin^-1(sin theta))/((1 - sin^2 theta)^(3/2)) * cos theta "d"theta`

= `int (theta * cos theta "d"theta)/((cos^2 theta)^(3/2))`

= `int (theta * cos theta)/(cos^3 theta) "d"theta`

= `int theta/(cos^2 theta) "d"theta`

= `int theta_"I" sec_"II"^2theta "d"theta`

=`theta * sec^2theta "d"theta - int ("D"(theta) * int sec^2theta "d"theta)"d"theta`  .....`[because int "u"_"I" * "v"_"II" "d"x = "u" * int "v" "d"x - int ("D"("u") int "v"  "dv")"dv" + "C"]`

= `theta * tan theta - int 1 * tan theta "d"theta`

= `theta * tan theta - log sec theta + "C"`

= `sin^-1x * x/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`  ......`[("When"  x = sin theta),(therefore tan theta = x/sqrt(1 - x^2) "and" sec theta = sqrt(1 - x^2))]`

Hence, I = `(x sin^-1x)/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 21 | पृष्ठ १६४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in xlog x.


Integrate the function in (sin-1x)2.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in e2x sin x.


Evaluate the following : `int x.sin^2x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


Find `int_0^1 x(tan^-1x)  "d"x`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×