Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
उत्तर
Let I = `int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Put x = sin θ
⇒ dx = cos θ dθ
I = `int (sin^-1(sin theta))/((1 - sin^2 theta)^(3/2)) * cos theta "d"theta`
= `int (theta * cos theta "d"theta)/((cos^2 theta)^(3/2))`
= `int (theta * cos theta)/(cos^3 theta) "d"theta`
= `int theta/(cos^2 theta) "d"theta`
= `int theta_"I" sec_"II"^2theta "d"theta`
=`theta * sec^2theta "d"theta - int ("D"(theta) * int sec^2theta "d"theta)"d"theta` .....`[because int "u"_"I" * "v"_"II" "d"x = "u" * int "v" "d"x - int ("D"("u") int "v" "dv")"dv" + "C"]`
= `theta * tan theta - int 1 * tan theta "d"theta`
= `theta * tan theta - log sec theta + "C"`
= `sin^-1x * x/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"` ......`[("When" x = sin theta),(therefore tan theta = x/sqrt(1 - x^2) "and" sec theta = sqrt(1 - x^2))]`
Hence, I = `(x sin^-1x)/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x2 log x.
Integrate the function in (sin-1x)2.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in e2x sin x.
Evaluate the following : `int x.sin^2x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sinx)/(1 + sin x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
Find `int_0^1 x(tan^-1x) "d"x`
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`