हिंदी

Evaluate the following: d∫sin-1x(1-x)32dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`

योग

उत्तर

Let I = `int (sin^-1 x)/((1 - x)^(3/2)) "d"x`

Put x = sin θ

⇒ dx = cos θ dθ

I = `int (sin^-1(sin theta))/((1 - sin^2 theta)^(3/2)) * cos theta "d"theta`

= `int (theta * cos theta "d"theta)/((cos^2 theta)^(3/2))`

= `int (theta * cos theta)/(cos^3 theta) "d"theta`

= `int theta/(cos^2 theta) "d"theta`

= `int theta_"I" sec_"II"^2theta "d"theta`

=`theta * sec^2theta "d"theta - int ("D"(theta) * int sec^2theta "d"theta)"d"theta`  .....`[because int "u"_"I" * "v"_"II" "d"x = "u" * int "v" "d"x - int ("D"("u") int "v"  "dv")"dv" + "C"]`

= `theta * tan theta - int 1 * tan theta "d"theta`

= `theta * tan theta - log sec theta + "C"`

= `sin^-1x * x/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`  ......`[("When"  x = sin theta),(therefore tan theta = x/sqrt(1 - x^2) "and" sec theta = sqrt(1 - x^2))]`

Hence, I = `(x sin^-1x)/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 21 | पृष्ठ १६४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in x log 2x.


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : log (x2 + 1)


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`inte^(xloga).e^x dx` is ______


Evaluate:

`int e^(logcosx)dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×