Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
उत्तर
Let I = `int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Put x = sin θ
⇒ dx = cos θ dθ
I = `int (sin^-1(sin theta))/((1 - sin^2 theta)^(3/2)) * cos theta "d"theta`
= `int (theta * cos theta "d"theta)/((cos^2 theta)^(3/2))`
= `int (theta * cos theta)/(cos^3 theta) "d"theta`
= `int theta/(cos^2 theta) "d"theta`
= `int theta_"I" sec_"II"^2theta "d"theta`
=`theta * sec^2theta "d"theta - int ("D"(theta) * int sec^2theta "d"theta)"d"theta` .....`[because int "u"_"I" * "v"_"II" "d"x = "u" * int "v" "d"x - int ("D"("u") int "v" "dv")"dv" + "C"]`
= `theta * tan theta - int 1 * tan theta "d"theta`
= `theta * tan theta - log sec theta + "C"`
= `sin^-1x * x/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"` ......`[("When" x = sin theta),(therefore tan theta = x/sqrt(1 - x^2) "and" sec theta = sqrt(1 - x^2))]`
Hence, I = `(x sin^-1x)/sqrt(1 - x^2) - log|sqrt(1 - x^2)| + "C"`
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in x log 2x.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : log (x2 + 1)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`inte^(xloga).e^x dx` is ______
Evaluate:
`int e^(logcosx)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1 + x^2) dx`