Advertisements
Advertisements
प्रश्न
Evaluate the following : `int e^(2x).cos 3x.dx`
उत्तर
Let I = `int e^(2x).cos 3x.dx`
I = `int cos 3x.e^(2x) dx`
= `cos 3x inte^(2x) .dx - int [d/dx (cos 3x) - e^(2x).dx]dx`
= `cos3x. (e^(2x))/(2) - int(-sin3x).(3) e^(2x)/2.dx`
= `(1)/(2).cos3xe^(2x) + 3/2 int sin 3x. e^(2x) dx`
= `(1)/(2)cos3xe^(2x) + 3/2[sin3x.int e^(2x)dx - int [(cos3x)3.int e^(2x)dx]dx`
= `(1)/(2)cos3x.e^(2x) + 3/2sin3x.(e^(2x))/2 - 3/2 .3int cos3x.e^(2x)/2dx`
= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 intcos3x.e^(2x)dx`
= `(1)/(2)cos3x.e^(2x) + 3/4sin3x.e^(2x) - 9/4 "I"`
`"I" + 9/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`
`13/4"I" = (1/2 cos3x + 3/4 sin3x)e^(2x)`
I = `4/13 [1/2cos3x + 3/4sin3x]e^(2x)`
I = `1/13 [2cos3x + 3sin3x]e^(2x) + c`
∴ I = `e^(2x)/(13) (2 cos3x + 3 sin 3x) + c`.
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in (sin-1x)2.
Integrate the function in x sec2 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: ∫ (log x)2 dx
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int ("d"x)/(x - x^2)` = ______
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(1-x)^-2 dx` = ______
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
`int1/(x+sqrt(x)) dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`