हिंदी

Integrate the following with respect to the respective variable : cos 3x cos 2x cos x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following with respect to the respective variable : cos 3x cos 2x cos x

योग

उत्तर

Let I = `int cos 3x cos 2x cos x *dx`

Consider cos 3x cos 2x cos x = `(1)/(2) cos 3x [2 cos 2x cos x]`

= `(1)/(2)cos3x [cos(2x + x) + cos(2x - x)]`

= `(1)/(2)[cos^2 3x + cos3x cosx]`

= `(1)/(4)[2cos^2 3x + 2cos 3x cosx]`

= `(1)/(4)[1 + cos6x + cos(3x + x) + cos(3x - x)]`

= `(1)/(4)[1 + cos6x + cos4x + cos2x]`

∴ I = `(1)/(4) int[1 + cos6x + cos4x + cos2x]*dx`

= `(1)/(4) int 1*dx + 1/4 int cos6x*dx + 1/4 int cos4x*dx + 1/4 int cos2x*dx`

= `x/(4) + (1)/(4)((sin6x)/6) + 1/4((sin4x)/4) + 1/4((sin2x)/2) + c`

= `(1)/(48)[12x + 2sin 6x + 3sin 4x + 6sin2x] + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 2.7 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin x.


Integrate the function in x log 2x.


Integrate the function in x cos-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in tan-1 x.


Integrate the function in `e^x (1/x - 1/x^2)`.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


`int 1/(4x + 5x^(-11))  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


`int(logx)^2dx` equals ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`intsqrt(1+x)  dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`intcos^-1(sqrt(x))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`int x^2 cos x  dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


The value of `inta^x.e^x dx` equals


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×