हिंदी

Integrate the following w.r.t.x : sec4x cosec2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t.x : sec4x cosec2x

योग

उत्तर

Let I = `int sec^4x  "cosec"^2x*dx`

= `int sec^4x  "cosec"^2x* sec^2x*dx`

Put tan x = t
∴ sec2x·dx = d
Also, sec2x cosec2x = (1 + tan2x)(1 + cot2x)

= `(1 + t^2)(1 + 1/t^2)`

= `(1 + t^2)((t^2 + 1)/t^2)`

= `(t^4 + 2t^2 + 1)/t^2`

= `t^2 + 2 + (1)/t^2`

∴ I = `int (t^2 + 2 + 1/t^2)*dt`

= `int t^2*dt + 2 int *dt + int 1/t^2*dt`

= `t^3/(3) + 2t + (t^-1)/((-1)) + c`

= `(1)/(3)tan^3x + 2tanx - (1)/tanx + c`

= `(1)/(3cot^3x) + (2)/(cotx) - cot x + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.2 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


Integrate the function in xlog x.


Integrate the function in (x2 + 1) log x.


Integrate the function in `(xe^x)/(1+x)^2`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


Evaluate: ∫ (log x)2 dx


`int 1/x  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int 1/sqrt(x^2 - 9) dx` = ______.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int 1/sqrt(x^2 - a^2)dx` = ______.


Solve: `int sqrt(4x^2 + 5)dx`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Solution of the equation `xdy/dx=y log y` is ______


`int1/(x+sqrt(x))  dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`inte^(xloga).e^x dx` is ______


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×