हिंदी

Evaluate: ∫dxx[(logx)2+4logx-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`

योग

उत्तर

Let I = `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`

Put log x = t

∴ `1/"x" "dx" = "dt"`

∴ I = `int "dt"/("t"^2 + 4"t" - 1)`

`= int 1/("t"^2 + 4"t" + 4 - 4 - 1)`dt

`= int 1/(("t + 2")^2 - 5)` dt

`= int 1/(("t + 2")^2 - (sqrt5)^2)` dt

`= 1/(2 sqrt5) log |("t" + 2 - sqrt5)/("t" + 2 + sqrt5)|` + c

∴ I = `1/(2 sqrt5) log|(log"x" + 2 - sqrt5)/(log "x" + 2 + sqrt5)|` + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Integration - MISCELLANEOUS EXERCISE - 5 [पृष्ठ १३९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Integration
MISCELLANEOUS EXERCISE - 5 | Q IV. 3) v) | पृष्ठ १३९

संबंधित प्रश्न

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`int e^x sec x (1 +   tan x) dx` equals:


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


`int 1/sqrt(x^2 - a^2)dx` = ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int1/(x+sqrt(x))  dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×