Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
उत्तर
Let I = `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Put log x = t
∴ `1/"x" "dx" = "dt"`
∴ I = `int "dt"/("t"^2 + 4"t" - 1)`
`= int 1/("t"^2 + 4"t" + 4 - 4 - 1)`dt
`= int 1/(("t + 2")^2 - 5)` dt
`= int 1/(("t + 2")^2 - (sqrt5)^2)` dt
`= 1/(2 sqrt5) log |("t" + 2 - sqrt5)/("t" + 2 + sqrt5)|` + c
∴ I = `1/(2 sqrt5) log|(log"x" + 2 - sqrt5)/(log "x" + 2 + sqrt5)|` + c
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`int e^x sec x (1 + tan x) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int 1/sqrt(x^2 - a^2)dx` = ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int1/(x+sqrt(x)) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`