Advertisements
Advertisements
प्रश्न
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
उत्तर
Let I = `int "e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`= int e^x/sqrt((e^x)^2 + 4e^x + 13)` dx
Put ex = t
∴ ex dx = dt
∴ I = `(dt)/(sqrt(t^2 + 4t + 13))`
`= int 1/sqrt(t^2 + 4t + 4 - 4 + 13)` dt
`= int 1/(sqrt((t + 2)^2 + 9))` dt
`= int 1/(sqrt((t + 2)^2 + (3)^2))` dt
`= log |t + 2 + sqrt((t + 2)^2 + (3)^2)|` + c
`= log |(t + 2) + sqrt(t^2 + 4t + 13)| + c`
∴ I = `log |(e^x + 2) + sqrt(e^(2x) + 4e^x + 13)| + c`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin-1 x.
Integrate the function in tan-1 x.
Integrate the function in (x2 + 1) log x.
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int (sinx)/(1 + sin x) "d"x`
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int logx dx = x(1+logx)+c`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`