Advertisements
Advertisements
प्रश्न
Integrate the function in (x2 + 1) log x.
उत्तर
Let `I = int (x^2 + 1) log x dx`
`= int log x. (x^2 + 1) dx`
Integrating piecewise by taking (log x) as the first function, we get
`I = (log x) int (x^2 + 1) dx - int [d/dx log x int (x^2 + 1) dx] dx`
`= log x. (x^3/3 + x) - int 1/x . (x^3/3 + 1) dx`
`= (x^3/3 + x) log x - int (x^3/3 + 1) dx`
`= (x^3/3 + x) log x - (x^3/9 + x) + C`
`= (x^3/3 + x) log x - x^3/9 - x + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in e2x sin x.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x log x) "d"x`
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
Find `int_0^1 x(tan^-1x) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).