Advertisements
Advertisements
प्रश्न
Evaluate the following : `int sin θ.log (cos θ).dθ`
उत्तर
Let I = `int sin θ.log (cos θ).dθ`
= `int log(cosθ).sinθ dθ`
Put cos θ = t
∴ – sin θ dθ = dt
∴ sin θ dθ = – dt
∴ I = `int logt.(- dt)`
= `- int (logt).1dt`
= `-[(log t) int 1dt - int {d/dt (log t) int 1 dt }dt]`
= `-[(logt)t - int1/t.t dt]`
= `- t logt + int 1 dt`
= – t log t + t + c
= – cos θ . log (cos θ) + cos θ + c
= – cos θ [log (cos θ) – 1] + c.
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin 3x.
Integrate the function in (x2 + 1) log x.
`int e^x sec x (1 + tan x) dx` equals:
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int(1-x)^-2 dx` = ______
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int logx dx = x(1+logx)+c`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`