हिंदी

Find: ∫2x(x2+1)(x2+2)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`

योग

उत्तर

Let I = `int (2x)/((x^2 + 1)(x^2 + 2)) dx`

Let `1/((x^2 + 1)(x^2 + 2)) = A/(x^2 + 1) + B/(x^2 + 2)`

⇒ 1 = A(x2 + 2) + B(x2 + 1)

⇒ 1 = (A + B)x2 + (2A + B)

On comparing both sides, we get

A + B = 0 and 2A + B = 0

On solving the above equations, we get

A = 1 and B = –1

∴ I = `int(1/(x^2 + 1) - 1/(x^2 + 2))2xdx`

I = `int (2x)/(x^2 + 1) dx - int (2x)/(x^2 + 2) dx`

I = `log|x^2 + 1| - log|x^2 + 2| + C`

I = `log|(x^2 + 1)/(x^2 + 2)| + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x log 2x.


Integrate the function in ex (sinx + cosx).


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate `int tan^-1x  dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×