Advertisements
Advertisements
प्रश्न
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
उत्तर
Let I = `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Let `1/((x^2 + 1)(x^2 + 2)) = A/(x^2 + 1) + B/(x^2 + 2)`
⇒ 1 = A(x2 + 2) + B(x2 + 1)
⇒ 1 = (A + B)x2 + (2A + B)
On comparing both sides, we get
A + B = 0 and 2A + B = 0
On solving the above equations, we get
A = 1 and B = –1
∴ I = `int(1/(x^2 + 1) - 1/(x^2 + 2))2xdx`
I = `int (2x)/(x^2 + 1) dx - int (2x)/(x^2 + 2) dx`
I = `log|x^2 + 1| - log|x^2 + 2| + C`
I = `log|(x^2 + 1)/(x^2 + 2)| + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log 2x.
Integrate the function in ex (sinx + cosx).
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int tan^-1x dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`