Advertisements
Advertisements
प्रश्न
Integrate the function in x log 2x.
उत्तर
Let `I = int x log 2x dx`
`= (log 2x) * x^2/2 - int d/dx (log 2x) (x^2)/2 dx`
`= log (2x)* x^2/2 - int 2/(2x) (x^2/2) dx + C`
`= x^2/2 log (2x) - 1/2 int x dx + C`
`= x^2/2 log (2x) - 1/2 * x^2/2 + C`
`= x^2/2 log (2x) - x^2/4 + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
`int logx/(1 + logx)^2 "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`