Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
उत्तर
Let I = `int xsqrt(5 - 4x - x^2).dx`
Let x = `"A"[d/dx(5 - 4x - x^2)] + "B"`
= A [– 4 – 2x] + B
= –2Ax + (B – 4A)
Comparing the coefficients of x and the constant term on both the sides, we get
–2A = 1, B – 4A = 0
∴ A = `-(1)/(2), "B" = 4"A" = 4(-1/2)` = – 2
∴ x = `-(1)/(2)(- 4 - 2x) - 2`
∴ I = `int [ -1/2 (- 4 - 2x) - 2]sqrt(5 - 4x - x^2).dx`
= `-(1)/(2) int (- 4 - 2x) sqrt(5 - 4x - x^2).dx - 2 int sqrt(5 - 4x - x^2).dx`
= I1 - I2
In I1, put 5 - 4x - x2 = t
∴ (– 4 – 2x).dx = dt
∴ I1 = `(1)/(2)int t^(1/2).dt `
= `-(1)/(2)(t^(3/2)/(3/2)) + c_1`
= `-(1)/(3)(5 - 4x - x^2)^(3/2) + c_1`
I2 = `2 int sqrt(5 - 4x - x^2).dx`
= `2 int sqrt(5 - (x^2 + 4x)).dx`
= `2 int sqrt(9 - (x^2 + 4x + 4)).dx`
= `2 int sqrt(3^2 - (x + 2)^2).dx`
= `2[((x + 2)/2) sqrt(3^2 - (x + 2)^2) + 3^2/(2)sin^-1 ((x + 2)/3)] + c_2`
= `(x + 2)sqrt(5 - 4x - x^2) + 9sin^-1 ((x + 2)/3) + c_2`
∴ I = `-(1)/(3)(5 - 4x - x^2)^(3/2) - (x + 2) sqrt(5 - 4x - x^2) - 9sin^-1 ((x + 2)/3) + c`, where c = c1 + c2 .
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin 3x.
Integrate the function in x cos-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in x sec2 x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int logx/(1 + logx)^2 "d"x`
∫ log x · (log x + 2) dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Solve: `int sqrt(4x^2 + 5)dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`