Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
उत्तर
Let I = `int "x"^2 "e"^"4x"`dx
`= "x"^2 int "e"^"4x" "dx" - int["d"/"dx" ("x"^2) int "e"^"4x" "dx"]` dx
`= "x"^2 * "e"^"4x"/4 - int 2"x" * "e"^"4x"/4` dx
`= ("x"^2 * "e"^"4x")/4 - 1/2 int "x" * "e"^"4x"` dx
`= ("x"^2 * "e"^"4x")/4 - 1/2 ["x" int "e"^"4x" "dx" - int ("d"/"dx" ("x") int "e"^"4x" "dx") "dx"]`
`= ("x"^2 * "e"^"4x")/4 - 1/2 ["x" * "e"^"4x"/4 - int 1 * "e"^"4x"/4 "dx"]`
`= ("x"^2 "e"^"4x")/4 - 1/2[("x" * "e"^"4x")/4 - 1/4 int "e"^"4x" "dx"]`
`= ("x"^2 "e"^"4x")/4 - 1/2[("x" * "e"^"4x")/4 - 1/4 * "e"^"4x"/4]` + c
`= ("x"^2 "e"^"4x")/4 - ("x" "e"^"4x")/8 + "e"^"4x"/32` + c
∴ I = `("e"^"4x")/4 ["x"^2 - "x"/2 + 1/8]` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x log x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Evaluate the following : `int log(logx)/x.dx`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`inte^(xloga).e^x dx` is ______
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`