Advertisements
Advertisements
प्रश्न
Integrate the function in x log x.
उत्तर
Let `I = int x log x dx`
`= log x int x dx - int [d/dx (log x) int x dx] dx`
`= log x (x^2/2) - int (1/x * x^2/2) dx`
`= x^2/2 log x - 1/2 int x dx + C`
`= x^2/2 log x -1/2 xx x^2/2 + C`
`= x^2/2 log x - 1/4 x^2 + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in `x^2e^x`.
Integrate the function in (x2 + 1) log x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (x2 + 1)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
Evaluate `int 1/(x(x - 1)) "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int_0^1 x tan^-1 x dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals