Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
उत्तर
Let I = `int [1/(log "x") - 1/(log "x")^2]` dx
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "e"^"t" [1/"t" - 1/"t"^2]` dt
Put f(t) = `1/"t"`
∴ f '(t) = `(-1)/"t"^2`
∴ I = `int "e"^"t" ["f"("t") + "f" '("x")]` dt
`= "e"^"t" "f"("t")` + c
∴ I = `"e"^"t" (1/"t") + "c" = "x"/(log "x")` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in ex (sinx + cosx).
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.