Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
उत्तर
Let I = `int "x"^3 "e"^("x"^2)`dx
`= int "x"^2 * "x" * "e"^("x"^2)` dx
Put x2 = t
∴ `"2x" * "dx" = "dt"`
∴ x dx = `"dt"/2`
∴ I = `1/2 int "te"^"t"` dt
`= 1/2 ["t" int "e"^"t" "dt" - int ["d"/"dt" ("t") int "e"^"t" "dt"] "dt"]`
`= 1/2 ["te"^"t" - int 1 * "e"^"t" "dt"]`
`= 1/2 ("te"^"t" - "e"^"t") + "c" = 1/2 "e"^"t" ("t - 1")` + c
∴ I = `1/2 "e"^("x"^2) ("x"^2 - 1)` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
`int logx/(1 + logx)^2 "d"x`
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x^3 e^(x^2) dx`