Advertisements
Advertisements
प्रश्न
Evaluate the following : `int cos(root(3)(x)).dx`
उत्तर
Let I = `int cos(root(3)(x)).dx`
Put `root(3)(x)` = t
∴ x = t3
∴ dx = 3t2.dt
∴ I = `int 3t^2 cos t.dt`
= `3t^2 int cos t.dt - int [d/dt (3t)^2 int cos t.dt].dt`
= `3t^2 sint - int 6t sint.dt`
= `3t^2 sint - [6t sin t.dt - int {d/dt (6t) int sin t.dt }.dt]`
= `3t^2 sint - [6t (- cos t) - int 6( - cos t).dt]`
= 3t2 sin t + 6t cos t – 6 sin t + c
= 3(t2 – 2) sin t + 6t cos t + c
= `3(x^(2/3) - 2) sin(root(3)(x)) + 6root(3)(x) cos(root(3)(x)) + c`.
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Solve: `int sqrt(4x^2 + 5)dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`