हिंदी

Evaluate the following : ∫cos(x3).dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int cos(root(3)(x)).dx`

योग

उत्तर

Let I = `int cos(root(3)(x)).dx`

Put `root(3)(x)` = t
∴ x = t3
∴ dx = 3t2.dt

∴ I = `int 3t^2 cos t.dt`

= `3t^2 int cos t.dt - int [d/dt (3t)^2 int cos t.dt].dt`

= `3t^2 sint - int 6t sint.dt`

= `3t^2 sint - [6t sin t.dt - int {d/dt (6t) int sin t.dt }.dt]`

= `3t^2 sint - [6t (- cos t) - int 6( - cos t).dt]`

= 3t2 sin t + 6t cos t – 6  sin t + c
= 3(t2 – 2) sin t + 6t cos t + c

= `3(x^(2/3) - 2) sin(root(3)(x)) + 6root(3)(x) cos(root(3)(x)) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 1.21 | पृष्ठ १३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin x.


Integrate the function in `x^2e^x`.


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in (x2 + 1) log x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Solve: `int sqrt(4x^2 + 5)dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`intsqrt(1+x)  dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×