Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
उत्तर
Let I = `int e^x [2 + cotx - "cosec"^2x].dx`
Put f(x) = 2 + cot x
∴ f'(x) = `d/dx (2 + cot x)`
= `d/dx (2) + d/dx (cot x)`
= 0 – cosec2x
= – cosec2x
∴ I = `int e^x [f(x) + f'(x)].dx`
= ex f(x) + c
= ex (2 + cot x) + c.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int x.cos^3x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: ∫ (log x)2 dx
`int (sinx)/(1 + sin x) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int ("d"x)/(x - x^2)` = ______
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
Find: `int e^x.sin2xdx`
`int(logx)^2dx` equals ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
The value of `inta^x.e^x dx` equals