Advertisements
Advertisements
प्रश्न
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
उत्तर
Let, I = `int e^x ((1 - sinx)/(1 - cosx))dx`
= `int e^x (1/(1 - cosx) - sinx/(1 - cosx))dx`
= `int e^x ((-sinx)/(1 - cosx) + 1/(1 - cosx))dx`
Let, f(x) = `(-sinx)/(1 - cosx)`
f'(x) = `-[(cosx(1 - cosx) - sinx (sinx))/(1 - cosx)^2]`
= `-[(cosx - cos^2x - sin^2x)/(1 - cosx)^2]`
= `-[(cosx - (cos^2x + sin^2x))/(1 - cosx)^2]`
= `-[(cosx - 1)/(1 - cosx)^2]`
= `(1 - cosx)/(1 - cosx)^2`
= `1/(1 - cosx)`
Hence, the given integration is of form
`int e^x [f(x) + f^'(x)]dx = e^x f(x)`
where f(x) = `(-sinx)/(1 - cosx)` and f'(x) = `1/(1 - cosx)`
∴ I = `e^x xx ((-sinx)/(1 - cosx))`
= `(e^x sinx)/((cosx - 1))`.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
`int (sinx)/(1 + sin x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Evaluate `int 1/(x log x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
Evaluate:
`intcos^-1(sqrt(x))dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.