हिंदी

Find ∫ex(1-sinx1-cosx)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int e^x ((1 - sinx)/(1 - cosx))dx`.

योग

उत्तर

Let, I = `int e^x ((1 - sinx)/(1 - cosx))dx`

= `int e^x (1/(1 - cosx) - sinx/(1 - cosx))dx`

= `int e^x ((-sinx)/(1 - cosx) + 1/(1 - cosx))dx`

Let, f(x) = `(-sinx)/(1 - cosx)`

f'(x) = `-[(cosx(1 - cosx) - sinx (sinx))/(1 - cosx)^2]`

= `-[(cosx - cos^2x - sin^2x)/(1 - cosx)^2]`

= `-[(cosx - (cos^2x + sin^2x))/(1 - cosx)^2]`

= `-[(cosx - 1)/(1 - cosx)^2]`

= `(1 - cosx)/(1 - cosx)^2`

= `1/(1 - cosx)`

Hence, the given integration is of form

`int e^x [f(x) + f^'(x)]dx = e^x f(x)`

where f(x) = `(-sinx)/(1 - cosx)` and f'(x) = `1/(1 - cosx)`

∴ I = `e^x xx ((-sinx)/(1 - cosx))`

= `(e^x sinx)/((cosx - 1))`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin x.


Integrate the function in x sec2 x.


Integrate the function in tan-1 x.


`intx^2 e^(x^3) dx` equals: 


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


`int (sinx)/(1 + sin x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Evaluate `int 1/(x log x)  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


Evaluate:

`intcos^-1(sqrt(x))dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×