Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
उत्तर
Let I = `int e^x/x [x (logx)^2 + 2log x].dx`
= `int e^x [(logx)^2 + (2logx)/x].dx`
Put f(x) = (log x)2
∴ f'(x) = `d/dx (logx)^2`
= `2 (logx).d/dx (logx)`
= `(2logx)/x`
∴ I = `int e^x [f(x) + f'(x)].dx`
= ex . f(x) + c
= ex . (log x)2 + c.
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in x log x.
Integrate the function in x tan-1 x.
Integrate the function in tan-1 x.
Integrate the function in ex (sinx + cosx).
Find :
`∫(log x)^2 dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: ∫ (log x)2 dx
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int logx/(1 + logx)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int (logx)^2 dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`