Advertisements
Advertisements
प्रश्न
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
विकल्प
`log ("cosec"x - cotx) + tan(x/2) + c`
sin 2x – cos x + c
`log (secx + tanx) - cot(x/2) + c`
cos 2x – sin x + c
उत्तर
`log (secx + tanx) - cot(x/2) + c`
[ Hint : `int 1/(cosx - cos^2x)*dx`
= `int 1/(cosx(1 - cosx))*dx`
= `int ((1 - cosx) + cosx)/(cosx(1 - cosx))*dx`
= `int (1/cosx + 1/(1 - cosx))*dx`
= `int [sec x + 1/2 "cosec"^2(x/2)]*dx`
= `log|secx + tanx|1/2((-cotx/2))/(1/2) + c`
= `log|secx + tanx| - cot(x/2) + c`].
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin x.
Integrate the function in x log x.
Integrate the function in x sin-1 x.
Integrate the function in x (log x)2.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int logx/x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Evaluate: ∫ (log x)2 dx
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int"e"^(4x - 3) "d"x` = ______ + c
∫ log x · (log x + 2) dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int logx dx = x(1+logx)+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`