English

Choose the correct options from the given alternatives : ∫1cosx-cos2x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =

Options

  • `log ("cosec"x - cotx) + tan(x/2) + c`

  • sin 2x – cos x + c

  • `log (secx + tanx) - cot(x/2) + c`

  • cos 2x – sin x + c

MCQ

Solution

`log (secx + tanx) - cot(x/2) + c`

[ Hint : `int 1/(cosx - cos^2x)*dx`

= `int 1/(cosx(1 - cosx))*dx`

= `int ((1 - cosx) + cosx)/(cosx(1 - cosx))*dx`

= `int (1/cosx + 1/(1 - cosx))*dx`

= `int [sec x + 1/2 "cosec"^2(x/2)]*dx`

= `log|secx + tanx|1/2((-cotx/2))/(1/2) + c`

= `log|secx + tanx| - cot(x/2) + c`].

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 149]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.09 | Page 149

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in xlog x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: ∫ (log x)2 dx


`int 1/(4x + 5x^(-11))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


`int ("d"x)/(x - x^2)` = ______


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


∫ log x · (log x + 2) dx = ?


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`int (logx)^2 dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3 e^(x^2) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×