English

Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 

Sum

Solution

Let I = `int "cosec" (log x)[1 - cot (log x)].dx`
Put log x = t
∴ et
∴ dx = et .dt

∴ I = `int "cosec" t (1 - cot t).e^t dt`

= `int e^t ["cosec"  t - "cosec"  t cot t].dt`

= `int e^t ["cosec"  t + d/dt ("cosec"  t)].dt`

= `e^t "cosec" t + c     ...[∵ int e^t [f(t) + f'(t)].dt = e^t f(t) + c]`

= x . cosec (log x) + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 138]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x cos-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in x sec2 x.


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3e^(x^2) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×