Advertisements
Advertisements
Question
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Solution
Let I = `int "x"^2 "e"^"3x"`dx
`= "x"^2 int "e"^"3x" "dx" - int["d"/"dx" ("x"^2) int "e"^"3x" "dx"]` dx
`= "x"^2 * ("e"^"3x"/3) - int 2"x" * "e"^"3x"/3` dx
`= ("x"^2)/3 "e"^"3x" - 2/3 int "x" * "e"^"3x"` dx
`= ("x"^2)/3 "e"^"3x" - 2/3 ["x" int "e"^"3x" "dx" - int ("d"/"dx" ("x") int "e"^"3x" "dx") "dx"]`
`= ("x"^2 * "e"^"3x")/3 - 2/3 ["x" * "e"^"3x"/3 - int 1 * "e"^"3x"/3 "dx"]`
`= ("x"^2 * "e"^"3x")/3 - 2/3 [1/3 "xe"^"3x" - 1/3 int "e"^"3x" "dx"]`
`= ("x"^2 * "e"^"3x")/3 - 2/3 [1/3 "xe"^"3x" - 1/3 * "e"^"3x"/3]` + c
∴ I = `1/3 "x"^2 * "e"^"3x" - 2/9 "xe"^"3x" + 2/27 "e"^"3x" + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the function in x2 log x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
`int sin4x cos3x "d"x`
`int 1/x "d"x` = ______ + c
Find `int_0^1 x(tan^-1x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Solve: `int sqrt(4x^2 + 5)dx`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`