English

Evaluate the following. ∫x2e3xdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following.

`int "x"^2 "e"^"3x"`dx

Sum

Solution

Let I = `int "x"^2 "e"^"3x"`dx

`= "x"^2 int "e"^"3x"  "dx" - int["d"/"dx" ("x"^2) int "e"^"3x" "dx"]` dx

`= "x"^2 * ("e"^"3x"/3) - int 2"x" * "e"^"3x"/3` dx

`= ("x"^2)/3  "e"^"3x" - 2/3 int "x" * "e"^"3x"` dx

`= ("x"^2)/3  "e"^"3x" - 2/3 ["x" int "e"^"3x"  "dx" - int ("d"/"dx" ("x") int "e"^"3x" "dx") "dx"]`

`= ("x"^2 * "e"^"3x")/3 - 2/3 ["x" * "e"^"3x"/3 - int 1 * "e"^"3x"/3  "dx"]`

`= ("x"^2 * "e"^"3x")/3 - 2/3 [1/3 "xe"^"3x" - 1/3 int "e"^"3x"  "dx"]`

`= ("x"^2 * "e"^"3x")/3 - 2/3 [1/3 "xe"^"3x" - 1/3 * "e"^"3x"/3]` + c

∴ I = `1/3 "x"^2 * "e"^"3x" - 2/9 "xe"^"3x" + 2/27 "e"^"3x" + "c"`

shaalaa.com

Notes

The answer in the textbook is incorrect.

  Is there an error in this question or solution?
Chapter 5: Integration - EXERCISE 5.5 [Page 133]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×