Advertisements
Advertisements
Question
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Solution 1
Let I =`int (log "x")/(1 + log "x")^2` dx
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "t"/(1 + "t")^2 "e"^"t" "dt"`
`= int "e"^"t" [(("t" + 1) - 1)/(1 + "t")^2]` dt
`= int "e"^"t" [cancel("t + 1")/("1 + t")^cancel2 - 1/(1 + "t")^2]` dt
`= int "e"^"t" [1/(1 + "t") - 1/(1 + "t")^2]` dt
Put f(t) = `1/"1 + t"`
∴ f '(t) = `(-1)/(1 + "t")^2`
∴ `int "e"^"t" ["f"("t") + "f" '("t")]` dt
`= "e"^"t" "f"("t") + "c"`
`= "e"^"t" * 1/(1 + "t")` + c
∴ I = `"x"/(1 + log "x")` + c
Solution 2
Let I =`int (log x)/(1 + log x)^2` dx
Adding and subtracting 1 from the numerator,
I =`int ((1 + log x) - 1)/(1 + log x)^2` dx
I =`int cancel((1 + log x))/(1 + log x)^cancel2 - int 1/(1 + log x)^2` dx
I =`int 1/(1 + log x) - int 1/(1 + log x)^2` dx
I =`int (1 + log x)^(-1) - int 1/(1 + log x)^2` dx
I =`int (1 + log x)^(-1).1 - int 1/(1 + log x)^2` dx
Integration by Parts,
`∫"u"."v" "dx" = "u" ∫"v" "dx" − ∫ [ ∫"v" "dx". "du"/"dx"] "dx"`
`"I" = (1 + log x)^(-1) ∫1 "dx" − ∫ [∫1 "dx". "d"/"dx" (1 + log x)^(-1)] "dx" - int 1/(1 + log x)^2 "dx"`
`"I" = (1 + log x)^(-1). x − ∫[cancelx. (-1)/(cancelx(1 + log x)^2)] "dx" - int 1/(1 + log x)^2 "dx"`
`"I" = (1 + log x)^(-1). x + ∫cancel(1/(1 + log x)^2) - int cancel(1/(1 + log x)^2) + c`
I = `(1 + log x)^(-1). x + c`
I = `x/(1 + log x). + c`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the function in (x2 + 1) log x.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int ("d"x)/(x - x^2)` = ______
Evaluate `int 1/(x log x) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.