Advertisements
Advertisements
Question
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Solution
Let I = `int x.sin 2x. cos 5x.dx`
`sin 2x cos 5x = (1)/(2)[2 sin2x cos5x]`
= `(1)/(2)[sin(2x+ 5x) + sin(2x - 5x)]`
= `(1)/(2)[sin7x - sin3x]`
∴ `int sin 2x cos 5x .dx = (1)/(2)[int sin 7x ..dx - intsin 3x.dx]`
= `(1)/(2)((-cos7x)/7) - (1)/(2) ((- cos3x)/3)`
= `-(1)/(14) cos7x + (1)/(6) cos3x` ...(1)
I = `int x sin 2x cos 5x.dx`
= `x int sin 2x cos 5x.dx - int [d/dx (x) int sin 2x cos 5x.dx].dx`
= `x[-1/14 cos7x + 1/6 cos 3x] - int 1.(-1/14 cos7x + 1/6 cos3x).dx` ...[By (1)]
= `-x/(14) cos7x + x/(6) cos3x + (1)/(14) int cos7x.dx - (1)/(6) int cos 3x.dx`
= `-x/(14) cos7x + x/(6) cos3x + (1)/(14) ((sin7x)/7) - (1)/(6) ((sin3x)/3) + c`
= `- x/(14) cos7x + x/(6) cos3x + (sin7x)/(98) - (sin3x)/(18) + c`.
APPEARS IN
RELATED QUESTIONS
Integrate : sec3 x w. r. t. x.
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin 3x.
Integrate the function in tan-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int1/(x+sqrt(x)) dx` = ______
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`inte^(xloga).e^x dx` is ______
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate:
`int1/(x^2 + 25)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
The value of `inta^x.e^x dx` equals
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`