English

D∫tan-1x dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int tan^-1 sqrt(x)  "d"x` is equal to ______.

Options

  • `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`

  • `x tan^-1 sqrt(x) - sqrt(x) + "C"`

  • `sqrt(x) - x tan^-1 sqrt(x) + "C"`

  • `sqrt(x) - (x + 1) tan^-1 sqrt(x) + "C"`

MCQ
Fill in the Blanks

Solution

`int tan^-1 sqrt(x)  "d"x` is equal to `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`.

Explanation:

Let I = `int 1 * tan^-1 sqrt(x)  "d"x`

= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1  sqrt(x))"'" int 1"d"x]"d"x`

= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x`  ....[Integrating by parrts]

= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`

Put x = t2

⇒ dx = 2t dt

∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`

= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`

= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`

= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`

= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 167]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 50 | Page 167

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x log x.


Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in tan-1 x.


Evaluate the following : `int x^2tan^-1x.dx`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int 1/(4x + 5x^(-11))  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/x  "d"x` = ______ + c


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


`intsqrt(1+x)  dx` = ______


`inte^(xloga).e^x dx` is ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


The value of `inta^x.e^x dx` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×