Advertisements
Advertisements
Question
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Options
`(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
`x tan^-1 sqrt(x) - sqrt(x) + "C"`
`sqrt(x) - x tan^-1 sqrt(x) + "C"`
`sqrt(x) - (x + 1) tan^-1 sqrt(x) + "C"`
Solution
`int tan^-1 sqrt(x) "d"x` is equal to `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`.
Explanation:
Let I = `int 1 * tan^-1 sqrt(x) "d"x`
= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1 sqrt(x))"'" int 1"d"x]"d"x`
= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x` ....[Integrating by parrts]
= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`
Put x = t2
⇒ dx = 2t dt
∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`
= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`
= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`
= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`
= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate : sec3 x w. r. t. x.
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x log x.
Integrate the function in x tan-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
Evaluate the following : `int x^2tan^-1x.dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int 1/(4x + 5x^(-11)) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`intsqrt(1+x) dx` = ______
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
The value of `inta^x.e^x dx` equals