English

Choose the correct options from the given alternatives : ∫cos-37x⋅sin-117x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =

Options

  • `log (sin^(-4/7) x) + c`

  • `(4)/(7)tan^(4/7) x + c`

  • `-(7)/(4)tan^(-4/7) x + c`

  • `log (cos^(3/7) x) + c`

MCQ

Solution

`-(7)/(4)tan^(-4/7) x + c`

[ Hint : `int cos^(-3/7)x sin^(-11/7)x*dx`

= `int (sin^(-11/7)x)/(cos^(-11/7)x*cos^2x)*dx`

= `int tan^(-11/7)x sec^2x*dx`
Put tan x = t].

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 149]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.14 | Page 149

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin x.


Integrate the function in x tan-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in tan-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in e2x sin x.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : e2x sin x cos x


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int 1/(4x + 5x^(-11))  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int logx/(1 + logx)^2  "d"x`


∫ log x · (log x + 2) dx = ?


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Solve: `int sqrt(4x^2 + 5)dx`


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


`intsqrt(1+x)  dx` = ______


`int1/(x+sqrt(x))  dx` = ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int (logx)^2 dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×