Advertisements
Advertisements
Question
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Options
`log (sin^(-4/7) x) + c`
`(4)/(7)tan^(4/7) x + c`
`-(7)/(4)tan^(-4/7) x + c`
`log (cos^(3/7) x) + c`
Solution
`-(7)/(4)tan^(-4/7) x + c`
[ Hint : `int cos^(-3/7)x sin^(-11/7)x*dx`
= `int (sin^(-11/7)x)/(cos^(-11/7)x*cos^2x)*dx`
= `int tan^(-11/7)x sec^2x*dx`
Put tan x = t].
APPEARS IN
RELATED QUESTIONS
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in x tan-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Integrate the function in e2x sin x.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int 1/(4x + 5x^(-11)) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int ("d"x)/(x - x^2)` = ______
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int logx/(1 + logx)^2 "d"x`
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Solve: `int sqrt(4x^2 + 5)dx`
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
`int1/(x+sqrt(x)) dx` = ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following:
`intx^3e^(x^2)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`