English

Integrate the function in xcos-1x1-x2. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.

Sum

Solution

Let `I = int (x cos^-1 x)/sqrt(1-x^2)  dx`

Put cos-1 x = t

`- 1/sqrt(1-x^2)  dx = dt`

`therefore I = - int t cos t  dt`

`= - [t int cos t dt - int (d/dt (t)* int cos t  dt) dt]`

`= -t sin t + int sin t  dt = -t sint - cos t + C`

`= -t sqrt (1 - cos^2 t) - cos t + C`

`= - cos^-1 x sqrt (1 - x^2) - x + C`

`= -[cos^-1 x* sqrt (1 - x^2) + x] + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 11 | Page 327

RELATED QUESTIONS

`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in xlog x.


Integrate the function in x cos-1 x.


Integrate the function in tan-1 x.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : e2x sin x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


∫ log x · (log x + 2) dx = ?


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×